




This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 10. Visual comparison of depth upsampling result on “reindeer” (8×), “dolls” (4×), “art” (2×), “moebius” (8×), “laundry” (4×), and “books” (2×),
respectively. Whereas the other five algorithms produce coarse and blurred results, our algorithm’s results are maximally close to the ground truth.

Fig. 11. Visual comparison of the four versions of our proposed algorithm on the Middlebury data set. To best visualize the difference, we use the downsampling
factor 8×. On one hand, we can see that all the four versions produce similar and fine upsampling results. On the other hand, the involvement of seed point
embedding and global enhancement upgrade the results, particularly around object boundaries.

and upsampling simultaneously, which led to its superiority
to our method. Under a large downsampling factor that fewer
seed points are involved, JOINT [29] failed to infer depth
details from less seed points, however, our proposed method
can remedy this by “borrowing” enough seed points (forward
and backward propagation process) from other area. Similarly,
the global enhancement scheme TGVL [27] we adopt in this
paper achieves good results for large downsampling factors,
but it fails to retain depth details for small downsampling
factors because its unilateral emphasis on global consistency
inevitably depletes the detail. FILTER [26] generates a much
larger RMSE than all other algorithms because it only includes
depth and spatial information to guide the upsampling process,
which in turn attests the importance of the RGB image during

upsampling. On the contrary, our proposed framework keeps
an appropriate balance between these factors and obtains good
results for all downsampling factors. The qualitative results
of our methods and five compared methods with some close-
ups are listed in Fig. 9. We can clearly observe that OurSEGE
achieves state of the art result regarding depth hierarchy, depth-
color consistency when comparing with the other five relevant
methods. In addition, the void hole in the ground truth image
can also be filled up by our proposed framework.

Besides, our proposed framework outperforms our previous
work on both downsampling factors, which shows that the in-
volvement of anisotropic diffusion tensor on both self-adaptive
upsampling and global enhancement dramatically improves the
final upsampling result.
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TABLE III
RMSE RESULTS ON THE MIDDLEBURY AND KITTI DATA SETS WITH RESPECT TO DIFFERENT AFFINITY MEASUREMENTS. THE DOWNSAMPLING

FACTOR FOR THE MIDDLEBURY DATA SET IS 2×, AND THE OCCLUSION LEVEL FOR THE KITTI DATA SET IS OCC.0

Visual comparison of depth upsampling results are shown in
Fig. 10. It is clear that at the downsampling factor 8×, FILTER
[26] and GEO [28] fail to keep depth boundary consistency
and lose many structural details. JOINT [29] damages depth
hierarchies and generates blurred boundaries. TGVL [27]
includes unnecessary texture details in the final depth map
and deliberately produces depth discontinuity around small
textures that lie on depth homogeneous regions. In contrast,
our proposed framework successfully avoids these issues and
keeps depth boundary sharpness and hierarchies. Further, it
retains the correlations between the RGB image and final depth
map maximally. OurSDGE, OurSE, and OurSEGE produce
similar results to OurSD, so we do not show them here due
to the space limitations. The direct comparison of those four
versions of our algorithm is show in Fig. 11.

C. Discussion

To compute two pixels’ affinity, we take the spatial, color,
and tensor distances into consideration. To determine whether
these additional distances improve the final performance, we
conducted another experiment by changing the definition of
ax,y to include only spatial distance (σS), only spatial and
color distance (σS + σC), and spatial, color and tensor together
(σS + σC + σT ). The experimental results on the Middlebury
and KITTI data set are listed in Table III. It is clear that
the involvement of color and tensor information dramatically
improves performance, especially on the KITTI data set. The
depth variation on the KITTI data set is much larger than the
depth variation on the Middlebury data set. The anisotropic
diffusion tensor helps to differentiate these depth value in a
more reasonable and robust way.

Overall, on both the Middlebury and KITTI benchmark
suites, our proposed LiDAR point cloud organization frame-
work can successfully recover object hierarchies, boundary
sharpness, and global integrity, regardless of the point cloud
sparsity, large losses, and 3D-2D degradation uncertainty. Even
though the method was initially designed to transform a LiDAR
point cloud into a depth map, it still works well on non-
LiDAR point cloud applications (e.g., the Middlebury data set
experiments presented in this paper).

V. CONCLUSION

In this paper, we proposed a novel framework to transform a
3D LiDAR point cloud into a 2D dense depth map using its
corresponding RGB image as a guide. Transforming the 3D
LiDAR points into RGB image compatible features has many
practical applications, especially in image based scene analysis
and environment perception. In fact, not only depth maps, but

many other useful features such as height and local plane sur-
face values are also important object features and can be applied
to image-related applications. We hope our work will motivate
further research on large-scale or holistic image based scene
understanding in robotics or autonomous driving, especially
with respect to the combination of 3D LiDAR point clouds and
RGB images.
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